Vereenvoudigde Samenvatting van dit artikel
Op verzoek van e-bike accuconsultant James Post heeft CALCE (electronics/lithium-ion testlaboratorium Universiteit van Maryland/USA) een studie uitgevoerd, inclusief praktische proef met 1.5Ah Lithium-Ion cellen om aan te tonen dat een gereduceerde SoC (laad/ontlaad) range degradatie minimaliseert en daarmee de levensduur verhoogt. Dit bevestigt eerder onderzoek en de praktijk in de EV-industrie, waar een verminderde SoC van typisch 20-80% fabrikanten in staat stelt tot 8 jaar pro rata garantie aan eindgebruikers aan te bieden.
Omdat het wetenschappelijke artikel niet gemakkelijk voor iedereen te begrijpen is, heeft James Post deze samenvatting van de resultaten, samengesteld, welke door Prof. Pecht, directeur van CALCE is goedgekeurd.
20-80% SoC (ont) laadbereik
Aangezien de test maakt gebruik van cellen, was celbalancering (vereist bij accupacks) niet nodig. Deze test gebruikt “coulomb tellen”: een exacte manier, in plaats van onnauwkeurig afschakelen bij een bepaalde spanning: SoC/Capaciteit = Spanning * Huidige * tijd.
In deze samenvatting gebruiken we de C/2 resultaten, die ongeveer overeen komen met hi-speed opladen en het gemiddelde Pedelec ontlaadvermogen: bij 11Ah 36V ongeveer 200W.
Meest relevante testresultaat
Na ca. 960 Ah cumulatieve ontlading (ongeveer 640 cycli) hebben de cellen, welke op- en ontladen zijn van 0-100% een restcapaciteit van 84% en de degradatie neemt aanzienlijk toe met de tijd. De 20-80% cellen eindigen met bijna 92%, een ca. factor 2 degradatieverschil.
Relatieve effecten van volledig laden en ontladen
Grafiek nr. 3
De blauwe lijn in de bovenstaande grafiek (0-60%) geeft bijna geen vermindering van de capaciteit na 600 Ah (400 equivalente volledige cycli). In vergelijking met het vorige 0-100% resultaat geeft dit aan dat volledige oplading de belangrijkste "schuldige" is. De grotere degradatie bij 40-100% bevestigt dit.
Opmerkingen
Conclusie: Deze aanbevelingen kunnen de levensduur minstens verdubbelen
Voor meer informatie in Nederland: http://www.ebikebatterysystems.com tel. 085-0020000
Publicatie in wetenschappelijke uitgave “Journal of Power Sources”
Na het opstellen van het rapport voor James Post, werd het als artikel gepubliceerd in het zeer gerespecteerde Journal of Power Sources. Hoewel in de gepubliceerde versie tekstuele wijzigingen zijn aangebracht, blijft de inhoud in essentie hetzelfde.
Aangezien de gepubliceerde versie auteursrechtelijk beschermd is, kunnen we het rapport niet als zodanig publiceren en beperken ons tot de introductie. Onder referentie Journal of Power Sources 327 (2016) 394-400 kunnen belanghebbenden een exemplaar bij Elsevier bestellen.
Nadat James Post het rapport ontving, werd de meeting voor 0-60% van grafiek nr. 4 uitgebreid, wat laat zien dat na 750 equivalente cycli, nog 97% van de originele capaciteit beschikbaar is!
(Source: Journal of Power Sources)
Het originele, volledige rapport:
Capacity Fade Modeling of Lithium-ion Batteries under Partial State of Charge (SOC) Cycling
Saurabh Saxena, Christopher Hendricks and Michael Pecht
Center for Advanced Life Cycle Engineering (CALCE)
University of Maryland, College Park, MD, 20742, USA
Abstract
This paper presents a methodology for modeling the capacity fade and identifying the optimal ranges of SOC for cycling of lithium-ion (LiCoO2) batteries to minimize degradation. Lithium-ion batteries are used in a variety of applications, and do not always undergo full charge and discharge cycling. This study will be very useful in understanding and quantifying the effect of partial charge-discharge cycling on li-ion battery capacity. LiCoO2 cells have been cycled for different SOC ranges and discharge currents to measure their capacity fade and impedance growth. The results are used to develop an empirical model of capacity fade of batteries under partial cycling conditions. The performance of this model is compared with other capacity fade models present in the literature. The optimal charge/discharge ranges obtained from this study can be combined with current SOC estimation methods for efficient life cycle and health management of lithium-ion batteries.
Battery cycling reduces the capacity of a battery through a variety of failure mechanisms. Charge-discharge cycling of a battery puts mechanical stresses on the electrodes causing particle fracture, SEI layer cracking, and loss of particle connectivity [1-2]. Combined with electrochemical reactions between the electrodes and electrolyte, the cell gradually loses its energy storage capabilities [1, 3].
In most practical applications, batteries undergo charge-discharge cycling only for partial SOC ranges as opposed to the full 0%–100% range. Hence, it is important to study the effects of partial range cycling on battery life. Various studies [3-12] confirm that battery SOC is one of the stress factors responsible for the degradation of Li-ion batteries. During the cycling of batteries, change in SOC (∆SOC) is also one of the parameters that limits the cycle life of batteries [5, 8-10].
2.1 Initial characterization
As Li-ion batteries are used in electrical energy storage systems, various electrical parameters and characteristics are associated with them. These parameters and characteristics were determined initially to define standards for a comparison analysis later in this study. The determination of these parameters and characteristics also helped in checking the battery cells’ viability compared to the manufacturer specification sheet. This analysis was helpful in rejecting the samples that had a large deviation from the manufacturer specifications.
The initial characterisation tests for Li-ion cells included:
a) Constant current constant voltage (CCCV) charge-constant discharge-CCCV charge at C/2 rate
b) Open Circuit Voltage (OCV) vs. SOC characterization
c) Electrochemical impedance spectroscopy
d) X-rays and scanning electron microscopy (SEM) inspection
e) Electrode material characterization using energy dispersive spectroscopy (EDS)
Upper Limit of SOC | ||||||
20% | 40% | 60% | 80% | 100% | ||
Lower Limit of SOC | 0% | - | - | 2, 2 (0.5C, 2C) | 2 (0.5C) | 2, 2 (0.5C, 2C) |
20% | NV* | - | 2 (0.5C) | 2, 2 (0.5C, 2C) | 2 (0.5C) | |
40% | NV | NV | 2, 2 (0.5C, 2C) | 2 (0.5C) | 2, 2 (0.5C, 2C) | |
60% | NV | NV | NV | - | - | |
80% | NV | NV | NV | NV | - |
*NV-Not Valid Condition
The conventional Coulomb counting method was used to estimate the SOC of test cells during cycling. The SOC estimation was done using following equation:
… (1)
Cells were initially charged to 100% SOC using the CCCV profile. After reaching 100% SOC, cells were discharged using constant C/2 current until they reached their minimum SOC limits (i.e. 20%) for the partial cycling. Constant current charge (always C/2) and constant current discharge (C/2 or 2C) were applied to the test cells for cycling between the desired maximum and minimum bounds of SOC (20% to 80%). Fig. 1 shows the current and voltage profiles for 20% to 80% SOC range and C/2 discharge current.
During the constant current charge and constant current discharge for a time period calculated from SOC estimation method, it is possible that battery voltage may reach upper cut-off voltage (4.2 V) and lower cut-off voltage (2.7V) respectively. In that case the charge or discharge current need to be interrupted to avoid overvoltage or undervoltage condition. The battery SOC in that case will be slightly lower or higher than the desired SOC bounds.
These differences from the desired SOC bounds were taken care of by estimating the current SOC at the time of current interruption and by taking into account these variations in the calculation of the overall average SOC and SOC deviation during cycling.
The capacity fade data for the first 6-month period, obtained from partial cycling at all the SOC ranges mentioned in the test matrix, were used for fitting the capacity fade model.
Results and Discussion
The results from the long-term testing at different SOC ranges are shown in Fig. 2, 3 and 4. The normalized discharge capacity in the plot denotes the ratio of discharge capacity of a degraded battery and the initial battery discharge capacity. Cumulative discharge capacity is the total amount of charge delivered by the battery for a predefined period of operation. The failure criterion of capacity reduction to 80% of initial capacity was used in this study.
Fig. 2. Cumulative discharge capacity for (Average SOC = 50%, ∆SOC = 100%, 60%, 20%, C/2 rate).
Fig.4. Cumulative discharge capacity for (Average SOC = 30%, 50%, 70%, ∆SOC = 60%, C/2 rate).See update for 0-60%: page 3
Impedance measurements of cells were also collected at regular intervals at 100% SOC conditions. Results for the impedance spectrum are presented in figure 5 and 6.
Fig. 5. Normalized real part of impedance for (Average SOC = 50%, ∆SOC = 100%, 60%, 20%, C/2 rate).
Fig. 6. Normalized real part of impedance for (Average SOC = 30%, 50%, ∆SOC = 60%, C/2 rate).
The results from this study suggest that battery degradation is affected by battery SOC as well as the difference in maximum and minimum values of SOC during cycling. The results coincide with the findings of other researchers in the literature. According to the results, the average SOC as well as the range of SOC during cycling should be minimized to reduce the capacity fade rate and achieve longer cycle life.
According to our findings, there exists an optimum value of average SOC around which the battery should be cycled within the optimal ∆SOC such as 0% to 60% to achieve higher life time and cumulative discharge capacity. These optimal ranges of SOC for the cycling of battery can be combined with SOC estimation methods to manage the life of batteries in applications including electric vehicles and grid energy storage.
References
© All rights reserved